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Abstract MIT App Inventor is an online platform designed to teach computational
thinking concepts through development ofmobile applications. Students create appli-
cations by dragging and dropping components into a design view and using a visual
blocks language to program application behavior. In this chapter, we discuss (1) the
history of the development of MIT App Inventor, (2) the project objectives of the
project and how they shape the design of the system, and (3) the processes MIT uses
to develop the platform and how they are informed by computational thinking litera-
ture. Key takeaways include use of components as abstractions, alignment of blocks
with student mental models, and the benefits of fast, iterative design on learning.

Keywords Computational thinking · Computational action · Educational
technology · Programming languages · Block-based programming ·Mobile
learning

3.1 Introduction

The smartphone is an information nexus in today’s digital age, with access to a nearly
infinite supply of content on the web, coupled with rich sensors and personal data.
However, people have difficulty harnessing the full power of these ubiquitous devices
for themselves and their communities. Most smartphone users consume technology
without being able to produce it, even though local problems can often be solvedwith
mobile devices. How then might they learn to leverage smartphone capabilities to
solve real-world, everyday problems? MIT App Inventor is designed to democratize
this technology and is used as a tool for learning computational thinking in a variety
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of educational contexts, teaching people to build apps to solve problems in their
communities.

MIT App Inventor is an online development platform that anyone can leverage to
solve real-world problems. It provides a web-based “What you see is what you get”
(WYSIWYG) editor for building mobile phone applications targeting the Android
and iOS operating systems. It uses a block-based programming language built on
Google Blockly (Fraser, 2013) and inspired by languages such as StarLogo TNG
(Begel & Klopfer, 2007) and Scratch (Resnick et al., 2009; Maloney, Resnick, Rusk,
Silverman, & Eastmond, 2010), empowering anyone to build a mobile phone app
to meet a need. To date, 6.8 million people in over 190 countries have used App
Inventor to build over 24 million apps. We offer the interface in more than a dozen
languages. People around the world use App Inventor to provide mobile solutions to
real problems in their families, communities, and the world. The platform has also
been adapted to serve requirements of more specific populations, such as building
apps for emergency/first responders (Jain et al., 2015) and robotics (Papadakis &
Orfanakis, 2016).

In this chapter, we describe the goals of MIT App Inventor and how they have
influenced our design and development—from the program’s inception at Google in
2008, through the migration to MIT, to the present day. We discuss the pedagogical
value of MIT App Inventor and its use as a tool to teach and encourage people of all
ages to think and act computationally. We also describe three applications developed
by students in different parts of the world to solve real issues in their communities.
We conclude by discussing the limitations and benefits of tools such as App Inventor
and proposing new directions for research.

3.2 MIT App Inventor Overview

The MIT App Inventor user interface includes two main editors: the design editor
and the blocks editor. The design editor, or designer (see Fig. 3.1), is a drag and drop
interface to lay out the elements of the application’s user interface (UI). The blocks
editor (see Fig. 3.2) is an environment in which app inventors can visually lay out
the logic of their apps using color-coded blocks that snap together like puzzle pieces
to describe the program. To aid in development and testing, App Inventor provides
a mobile app called the App Inventor Companion (or just “the Companion”) that
developers can use to test and adjust the behavior of their apps in real time. In this
way, anyone can quickly build a mobile app and immediately begin to iterate and
test.
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Fig. 3.1 App Inventor’s design editor. App inventors drag components out from the palette (far
left) to the viewer (center left) to add them to the app. Inventors can change the properties of
the components (far right). An overview of the screen’s components and project media are also
displayed (center right)

3.3 MIT App Inventor Design Goals

In the design of MIT App Inventor, introducing mobile app development in educa-
tional contextswas a central goal. Prior to its release,most development environments
for mobile applications were clunky, only accessible with expertise in systems level
or embedded programming, or both. Even with Google’s Android operating system
and the Java programming language, designing the user interface was a complex
task. Further, use of the platform required familiarity with Java syntax and seman-
tics, and the ability to debug Java compilation errors (e.g., misspelled variables or
misplaced semicolons) for success. These challenges presented barriers to entry for
individuals not versed in computer science, App Inventor’s target demographic. We
briefly highlight and discuss design goals for the App Inventor project, specifically,
the use of components to abstract some of the complexity of platform behavior, and
the use of blocks to eliminate complexity of the underlying programming language.
These goals can be further explained as aligning the visual language to the mental
models of young developers and enabling exploration through fast, iterative design.
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Fig. 3.2 App Inventor’s blocks editor. Blocks code is typically read left to right, top to bottom. In
this example, one would read “when Cat click, do call Meow play,” that is, play the meow sound
when the cat is clicked

3.3.1 Component Abstraction for Platform Behavior

Components are core abstractions in MIT App Inventor. Components reduce the
complexity of managing interactions with platform-specific application program-
ming interfaces (APIs) and details concerning state management of device hardware.
This allows the user to think about the problem at hand rather than the minutia typi-
cally required of application developers. For example, someone planning to use MIT
App Inventor to build an app to use the global positioning system (GPS) to track
movement need not be concerned with application lifecycle management, GPS soft-
ware and hardware locks, or network connectivity (in case location detection falls
back to network-based location). Instead, the app developer adds a location sensor
component that abstracts away this complexity and provides an API for enabling and
processing location updates. More concretely, this implementation reduces 629 lines
of Java code to 23 blocks, of which only two are required to accomplish location
tracking. This reduction in complexity enables app inventors to focus on the problem
at hand and quickly accomplish a goal.

Components aremadeupof threemajor elements: properties,methods, and events.
Properties control the state of the component and are readable and/or writable by the
app developer. For example, the enabled property of the location sensor includes the
functionality required to configure the GPS receiver and to manage its state while the
app is in use.Methods operate on multiple inputs and possibly return a result. Events
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respond to changes in the device or app state based on external factors. For example,
when the app user changes their location, the location changed event allows the app
logic to respond to the change.

3.3.2 Blocks as Logic

In MIT App Inventor, users code application behavior using a block-based program-
ming language. There are two types of blocks in App Inventor: built-in blocks and
component blocks. The built-in blocks library provides the basic atoms and opera-
tions generally available in other programming languages, such as Booleans, strings,
numbers, lists, mathematical operators, comparison operators, and control flow oper-
ators. Developers use component blocks (properties, methods, and events) to respond
to system and user events, interact with device hardware, and adjust the visual and
behavioral aspects of components.

3.3.2.1 Top-Level Blocks

All program logic is built on three top-level block types: global variable defini-
tions, procedure definitions, and component event handlers. Global variables provide
named slots for storing program states. Procedures define common behaviors that
can be called from multiple places in the code. When an event occurs on the device,
it triggers the corresponding application behavior prescribed in the event block. The
event handler block may reference global variables or procedures. By limiting the
top-level block types, there are fewer entities to reason about.

3.3.3 Mental Modeling

The development team for App Inventor considered a number of restrictions when
designing the environment. We examine a few design decisions, the rationale behind
them, and their effects on computational thinking within App Inventor.

3.3.3.1 What You See Is What You Get (WYSIWYG)

The design editor for App Inventor allows developers to see how the app will appear
on the device screen and adjust the form factor of the visualized device (e.g., phone or
tablet). Adjustments to properties of the visual components, for example, background
color and size, are reflected in real time. Apps can also be run in a live development
mode using the Companion, which we will be discussed in more detail below.
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The App Inventor team recently added capability for creating map-based applica-
tions. The functionality allows app inventors to drag, drop, and edit markers, lines,
polygons, rectangles, and circles in their maps, as well as integrate web-based data
from geographic information systems (GIS) to build content-rich apps. This way, the
user can move the content around easily to achieve great results without needing to
provide most of the logic for this in code.

3.3.3.2 Design Time Component Creation

Unlike many programming languages, App Inventor limits runtime creation of new
entities. This provides multiple benefits. First, by explicitly positioning all compo-
nents in the app, the user can visualize it clearly rather than having to reason about
things that will not exist until a future time. Second, it reduces the chances of users
introducing cyclic memory dependencies in the user interface that would eventually
cause the app to run out of memory. This encourages app inventors to think about
how to appropriately structure their applications and reuse components to avoid
overloading the system or their end users.

3.3.3.3 Natural Numbering

The number system in App Inventor assumes a starting value of 1, in line with
children’s counting skills (Gelman & Gallistel, 1978). This is unlike most program-
ming languages, which are more aligned with machine architecture and therefore
start at 0.

3.3.4 Fast Iteration and Design Using the Companion

A key feature of MIT App Inventor is its live development environment for mobile
applications. App Inventor provides this by means of a companion app installed
on the user’s mobile device. The App Inventor web interface sends code to the
companion app, which interprets the code and displays the app in real time to the
developer (Fig. 3.3). This way, the user can change the app’s interface and behavior
in real time. For example, a student making a game involving the ball component
may want to bounce the ball off the edge of the play area. However, an initial imple-
mentation might have the ball collide with the wall and then stop. After discovering
the Ball.EdgeReached event, the student can add the event and update the direc-
tion of the ball using the Ball.Bounce method. By testing the app and adjusting its
programming in response to undesired behavior, students can explore more freely.

The traditional build cycle for an Android app involves writing code in a text
editor or integrated development environment, and rebuilding the application for
testing may often take minutes, whereas making a change in the live development



3 MIT App Inventor: Objectives, Design, and Development 37

Fig. 3.3 The MIT Companion app interface for Android (left). After establishing a connection
with the user’s browser session, the active project is displayed in the companion app (right). See
Fig. 3.1 for the designer view of the same project

environment typically takes effect in 1–2 s. Seeing changes reflected in the app
quickly means that students can explore and even make mistakes while exploring,
because the time cost of those mistakes is relatively small.

3.4 The History of MIT App Inventor

The App Inventor project began at Google in 2007 when Prof. Hal Abelson of MIT
went on sabbatical at Google Labs. The project leads were inspired by increased
interest in educational blocks programming languages, such as Scratch, and the
release of the new Android operating system. This educational project was migrated
to MIT when Google closed Google Labs in 2011. In this section, we briefly cover
inception and early development of the App Inventor platform, first at Google, and
then at MIT.
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3.4.1 Inception at Google

Hal Abelson conceived the idea of App Inventor while on sabbatical at Google
Labs in 2007. Abelson had previously taught a course at MIT on mobile program-
ming, but at the time mobile app development required significant investment on the
part of developers and development environments. Also in 2007, Google publicly
announced the Android operating system. Abelson and Mark Friedman of Google
began developing an intermediate language between the blocks language and Java
APIs for Android, called Yet Another Intermediate Language (YAIL). The project
was intended to help younger learners program for Android. Abelson and Friedman
generated YAIL from a block-based language based on OpenBlocks (Roque, 2007),
and the design of which was drawn from StarLogo TNG (Begel & Klopfer, 2007).
The user interface and related components embodied Papert’s idea of “powerful ideas
in mind-size bites” (Papert, 1993). The Google version of the project terminated at
the end of 2011, but the educational technology was transferred to MIT so that
development and educational aspects could continue (Kincaid, 2011). Prof. Abelson
joined Prof. Eric Klopfer of the Scheller Teacher Education Program lab and Prof.
Mitch Resnick of the MIT Media Lab, forming a group called the MIT Center for
Mobile Learning to carry on the App Inventor vision.

3.4.2 Educational Expansion at MIT

In late 2011, Google transferred stewardship of the App Inventor project to MIT.
Much of the development focused on increasing capabilities to support educational
goals of the project. At this time, the team developed additional curricula, making
them freely available to teachers for computer science and computational thinking
education. TheMIT team also hosted a number of 1-dayworkshops, primarily around
the northeast United States, training teachers in the pedagogy of App Inventor. We
now focus on guided and open exploration in our materials rather than presenting
students with step-by-step instructions in order to encourage self-guided learning. By
makingmistakes, students have the opportunity to practicemore of the computational
thinking principles, such as debugging, described by Brennan and Resnick (2012).

Technical development at MIT focused on development of new components
including robotics (LEGO™EV3), cloud-oriented data storage (CloudDB), and geo-
graphic visualization (Map). App Inventor team also developed Internet of Things
related extensions so learners could interact with physical hardware external to their
mobile devices, and to leverage the growing collection of small computer boards,
such as Arduino, BBC micro:bit, and Raspberry Pi. To this day, the team continues
its work of development, creating complementary educational materials in parallel.



3 MIT App Inventor: Objectives, Design, and Development 39

3.5 MIT App Inventor in Education

The primary aimofMITApp Inventor is providing anyonewith an interest in building
apps to solve problems with the tools necessary to do so. Instructional materials
developed by the team are primarily oriented toward teachers and students at the
middle- and high-school levels, but app inventors come in all ages from around the
world. In this section, we describe a few of the key components of the MIT App
Inventor educational strategy, including massively online open courses (MOOCs)
focused on MIT App Inventor, the Master Trainer (MT) program, the extensions
functionality ofApp Inventor that allows incorporation of newmaterial for education,
and research projects that have leveraged App Inventor as a platform for enabling
domain-specific computing.

3.5.1 Massive Open Online Courses

A desire to learn computational thinking has driven a proliferation of online educa-
tional material that anyone can access to increase their knowledge and understand-
ing. As we continue to integrate information technology into our daily lives, mobile
devices, and other new technologies, we can observe that a deeper understanding of
computing is necessary to be an effective member of society, and those who learn
computational thinking will have an advantage in our knowledge-driven economy.

Many massive open online courses have been developed wholely or in part using
App Inventor. For example, an App Inventor EdX course closely integrates with the
AP CS Principles course and incorporates many computational thinking elements.
Students therefore can both build their ownmobile apps and learn core competencies
related to computation.

3.5.2 MIT Master Trainers Program

MIT provides special instruction to educators through theMaster Trainers program.1

A prototype of the Master Trainers program began during a collaboration with the
Verizon App Challenge in 2012. Skilled App Inventor educators were recruited and
given a small amount of special training to help mentor and train teams who subse-
quently won theAppChallenge. The currentMaster Trainers programwas conceived
in 2015, to “grow a global community of experts onmobile app development who are
available to guide others through the exploration of mobile app creation…, thus pro-
viding a pathway into computer science, software development, and other disciplines
relevant in today’s digital world.”

1http://appinventor.mit.edu/explore/master-trainers.html.

http://appinventor.mit.edu/explore/master-trainers.html


40 E. W. Patton et al.

In order to become a Master Trainer, one must demonstrate proficiency in App
Inventor, for example, through taking the App Inventor EdX MOOC. The MOOC
is highly integrated with computational thinking concepts, giving students a strong
foundation in the concepts and practices associated with computational thinking.
Aspiring Master Trainers then complete a 10-week online reading course covering
topics such as App Inventor’s mission and philosophy, pedagogy of teaching children
and adults, constructionism, and design thinking. Lastly, there is an on-site 3-day
workshop at MIT where participants dive into App Inventor features and learn to use
App Inventor in a classroom to foster creativity, collaboration, and problem-solving.
At the time of writing, there were 57 master trainers in 19 countries.

3.5.3 Extensions

Anyone with Java and Android programming experience can write their own compo-
nents for App Inventor using our extension mechanism. For example, MIT recently
published a suite of Internet of things (IOT)-related extensions2 for interfacing with
Arduino 101 and BBC micro:bit microcontrollers, with support for other platforms
in development. Using these extensions, teachers can assemble custom curricula to
leverage these technologies in the classroom and encourage their students to explore
the interface between the world of software and the world of hardware.

We foresee the development of extensions related to artificial intelligence tech-
nologies, including deep learning, device support for image recognition, sentiment
analysis, natural language processing, andmore. Ideally, these complex technologies
could be leveraged by anyone looking to solve a problem with the smartphone as a
platform.

3.5.4 Research Projects

In addition to its pedagogical applications, App Inventor offers excellent opportuni-
ties for research in education and other areas. Early work focused on understanding
how to appropriately name components for educational use (Turbak, Wolber, &
Medlock-Walton, 2014). Usability in domain-specific contexts, such as humanitar-
ian needs (Jain et al., 2015) and educational settings (Morelli, De Lanerolle, Lake,
Limardo, Tamotsu, & Uche, 2011; Xie, Shabir, & Abelson, 2015), is also an area
of interest. More recently, App Inventor has been used as a mechanism for data col-
lection and visualization (Harunani, 2016; Mota, Ruiz-Rube, Dodero, & Figueiredo,
2016;Martin,Michalka, Zhu,&Boudelle, 2017).We are currently exploring expand-
ing App Inventor’s capabilities to include real-time collaboration between students,
which should yield additional educational opportunities (Deng, 2017).

2http://iot.appinventor.mit.edu.

http://iot.appinventor.mit.edu
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3.6 Empowerment Through Programming

By placing the output of student programming on mobile devices, App Inventor
allows students to move their work out of traditional computer labs, and into their
everyday lives and communities. This transition has powerful implications for what
students create andhow they envision themselves as digital creators. It allows students
to shift their sense of themselves from individuals who “know how to code” to
members of a community empowered to have a real impact in their lives and those
of others. Below, we outline how App Inventor moves computing education from
a focus on the theoretical to a focus on the practical, how we can reconceptualize
computing education through a lens of computational action, and how we support
students to engage in a broader community of digitally empowered creators.

3.6.1 From Theoretical to Practical

Traditional computer science curricula at the university level often focus on theory
and include evaluation tools (e.g., Big-O notation of algorithms) and comprehension
of the space and time complexity of data structures. Instead, App Inventor curricula
focus on using a language practically to solve real-world problems. Rather than plac-
ing emphasis on learning concepts such as linked lists or key–value mappings, App
Inventor hides the complexity of these data structures behind blocks so that students
can spend more time designing apps that perform data collection and analysis, or
integrate with a range of sensors and actuators interacting with external environ-
ments. This allows for a top-down, goal-based decomposition of the problem rather
than a bottom-up approach, although App Inventor does not preclude such a strategy.

3.6.2 Computational Thinking

The concept of computational thinking was first used by Seymour Papert in his sem-
inal book Mindstorms: Children, computers, and powerful ideas (1993); however, it
was largely brought into the mainstream consciousness by Jeannette Wing in 2006.
For Wing, computational thinking is the ability to think like a computer scientist. In
the decade since, many educational researchers have worked to integrate computa-
tional thinking into modern computing and STEM curricula (Tissenbaum, Sheldon,
& Sherman, 2018). However, the explosive growth of computational thinking has
also resulted in a fragmentation of its meaning, with educational researchers, cur-
riculum designers, and teachers using different definitions, educational approaches,
and methods of assessments (Denning, 2017). There have been attempts to recon-
cile these differences (National Academy of Sciences, 2010) and to bring leading
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researchers together to compare and contrast these perspectives (Tissenbaum et al.,
2018).

For most educational practitioners and researchers, computational thinking is
dominated by an epistemological focus on computational thinking, in which students
learn programming concepts (such as loops, variables, and data handling) and the use
of abstractions to formally represent relationships between computing and objects in
the real world (Aho, 2012). While this view has become the most prominent view of
computational thinking, Papert critiqued mainstream schooling’s emphasis on these
“skills and facts” as a bias against ideas (Papert, 2000). Papert went further, arguing
that students should be encouraged to follow their own projects and that learning the
necessary skills and knowledge would arise as students encountered new problems
and needed to solve (or not solve) them. This position of computational thinking and
computing education fits more naturally with the ways that professionals engage in
computer science: in pursuit of finishing a project, problems naturally come up and
computer scientists reach out to the community through sites like Stack Overflow,
or search the web for tutorials or other support. This disconnect between how we
teach computing and how it is practiced in the real world requires us to critically
reexamine theoretical and practical approaches. Below, we argue for an approach to
computing education, termed computational action, that we believe matches these
broader ideals.

3.6.3 Computational Action

While the growth of computational thinking has brought new awareness to the impor-
tance of computing education, it has also created new challenges. Many educational
initiatives focus solely on the programming aspects, such as variables, loops, con-
ditionals, parallelism, operators, and data handling (Wing, 2006), divorcing com-
puting from real-world contexts and applications. This decontextualization threatens
to make learners believe that they do not need to learn computing, as they cannot
envision a future in which they will need to use it, just as many see math and physics
education as unnecessary (Flegg et al., 2012; Williams et al., 2003).

This decontextualization of computing education from the actual lives of students
is particularly problematic for students underrepresented in the fields of computing
and engineering, such as women and other learners from nondominant groups. For
these students, there is a need for their work to have an impact in their community
and for it to help them develop a sense of fit and belonging (Pinkard et al., 2017).
Lee and Soep (2016) argue that a critical perspective for computing is essential
for students to develop a critical consciousness around what they are learning and
making, moving beyond simply programming, instead of asking the students what
they are programming and why they are programming it.

In response, the App Inventor team advocates for a new approach to computing
education that we call computational action. The computational action perspective
on computing argues that while learning about computing, young people should also
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have opportunities to create with computing which have direct impact on their lives
and their communities. Through our work with App Inventor, we have developed
two key dimensions for understanding and developing educational experiences that
support students in engaging in computational action: (1) computational identity
and (2) digital empowerment. Computational identity builds on prior research that
showed the importance of young people’s development of scientific identity for
future STEM growth (Maltese & Tai, 2010). We define computational identity as a
person’s recognition that they can use computing to create change in their lives and
potentially find a place in the larger community of computational problem-solvers.
Digital empowerment involves instilling in them the belief that they can put their
computational identity into action in authentic and meaningful ways.

Computational action shares characteristics with other approaches for refocusing
computing education toward student-driven problem-solving, most notably compu-
tational participation (Kafai, 2016). Both computational action and computational
participation recognize the importance of creating artifacts that can be used by others.
However, there is a slight distinction between the conceptualizations of community
in the two approaches. In computational participation, community largely means the
broader community of learners engaging in similar computing practices (e.g., the
community of Scratch programmers that share, reuse, and remix their apps). While
such a learning community may be very beneficial to learners taking part in a com-
putational action curriculum, the community of greater importance is the one that
uses or is impacted by the learners’ created products (e.g., their family, friends, and
neighbors). This computational identity element of computational action acknowl-
edges the importance of learners feeling a part of a computing community (i.e., those
that build and solve problems with computing), but it is not a requirement that they
actively engage with this larger community. A small group of young app builders,
such as those described below, may develop significant applications and believe they
are authentically part of the computing community, without having connected with
or engaged with it in a deep or sustained way as would be expected in computational
participation.

Through students’ use of App Inventor, we have seen this computational action
approach produce amazing results. Students in theUnited States have developed apps
to help a blind classmate navigate their school (Hello Navi3); students in Moldova
developed an app to help people in their country crowdsource clean drinking water
(Apa Pura4); and as part of the CoolThink@JC project, students in Hong Kong
created an app, “Elderly Guardian Alarm,” to help the elderly when they got lost.
Across these projects, we see students engaging with and facilitating change in their
communities, while simultaneously developing computational identities.

3https://www.prnewswire.com/news-releases/321752171.html.
4The Apa Pura Technovation pitch video is available online at https://youtu.be/1cnLiSySizw.

https://www.prnewswire.com/news-releases/321752171.html
https://youtu.be/1cnLiSySizw
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3.6.4 Supporting a Community Around Computation
and App Creation

Westarted theAppof theMonth program in 2015 in order to encourageApp Inventors
to share their work with the community. Any user can submit their app to be judged
in one of four categories: Most Creative, Best Design, Most Innovative, and Inventor.
Submissions must be App Inventor Gallery links, so that any user can remix winning
apps. Furthermore, apps are judged in two divisions: youth and adult.

Now, 3 years after the program’s inception, approximately 40 apps are submitted
each month. More youth tend to submit than adults, and significantly more male
users submit than female users, especially in the adult division. While submissions
come in from all over the world, India and the USA are most highly represented.

Themes of submitted apps vary widely. Many students submit “all-in-one” apps
utilizing the Text to Speech and Speech Recognizer components. Adults often submit
learning apps for small children. Classic games, such as Pong, also get submitted
quite frequently. Teachers tend to submit apps that they use in their classrooms.

Perhaps most importantly, students and adults alike submit apps designed to solve
problemswithin their own lives or their communities. For example, a recent submitter
noticed that the Greek bus system is subject to many slowdowns, so he built an app
that tracks buses and their routes. Similarly, a student noticed that many of her peers
were interested in reading books, but did not know how to find books they would
like, so she built an app that categorizes and suggests popular books based on the
Goodreads website.

However, not all users fit the same mold. One student found that he enjoys logic-
and math-based games, and after submitting regularly for about a year, his skill
improved tremendously. Hundreds of people have remixed his apps from the Gallery,
and even downloaded them from the Google Play Store, encouraging the student to
pursue a full-time career in game development.

The App of the Month program, as a whole, encourages users to think of App
Inventor as a tool they can use in their daily lives and off-the-screen communities.
It also provides incentive to share their apps and recognition for their hard work.
Users go to App Inventor to solve problems—which makes them App Inventors
themselves.

3.7 Discussion

We have seen in detail many aspects of the MIT App Inventor program from the
development and educational perspective. There are some misconceptions, limita-
tions, and benefits that are important to highlight.
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3.7.1 Common Misconceptions

One common position detractors take is that blocks programming is not real pro-
gramming (often comparing blocks languages to text languages). This is a false
dichotomy if one understands programming to be the act of describing to a computer
some realization of a Turing machine. The examples presented in earlier sections
highlight how people use MIT App Inventor to solve real problems they face in their
communities. To this end, younger individuals recognize that through tools such as
App Inventor they can effect real change in their community, if not the whole world.
Novice users who begin learning programming with blocks languages also tend to
go further and continue more often than learners of textual languages (Weintrop &
Wilensky, 2015).

Another common misconception is that creating mobile applications is some-
thing that only experts and those who have a lot of experience programming can
do. However, students across the K-12 spectrum use App Inventor to develop their
own mobile applications with little to no prior experience. For instance, the Cool-
Think@JC curriculum targets over 15,000 students in Hong Kong from grades 4–6.
This intervention has enabled these elementary students to learn both to think com-
putationally and to develop their own apps to address local issues (Kong et al., 2017).

3.7.2 Limitations

Computational proficiency is often assessed in traditional textual representations; for
example, the AP Computer Science A exam is assessed in the Java programming
language. For students who learn in block-based representations, it can be difficult
to transition to textual representations. Therefore, it is important to help students
transition to textual languages, while ensuring that knowledge gained in the visual
language is not lost. Prof. Dave Wolber and a team at USF are actively addressing
this through the development of the App Inventor Java Bridge.5 The Java bridge
allows anyone to translate an App Inventor application into a Java application com-
patible with Android Studio, the official text-based development environment used
to build native Android applications. This enables students to transition from the AP
Computer Science 0 curriculum to AP Computer Science A.

Another current limitation of App Inventor is that its design inhibits code reuse.
Code reuse is one of the key computational thinking concepts in Brennan and
Resnick’s framework (2012). Many text-based languages provide robust support
for code libraries and dependency management, allowing app developers to build on
each other’s work more easily. While App Inventor provides a gallery for publishing
completed app source code, the community has yet to develop the granularity of
libraries common in other programming languages. This presents an opportunity to

5http://appinventortojava.com/.

http://appinventortojava.com/
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continue to grow the platform and user community and is a worthy subject for further
exploration.

3.7.3 Benefits of Visual Programming for Mobile

Users of the App Inventor platform benefit from being able to repurpose the com-
putational thinking skills they learn to interface with physical space in the external
world. The visual programming of App Inventor and the abstraction and compart-
mentalization of concepts into components and blocks allow the app inventor to
focus more on decomposing their problems into solvable elements. The facility of
running apps on mobile devices allows the students to experience their own apps
as part of an ecosystem they interact with daily, and with which they are intimately
familiar. Since this encapsulation reduces the time it takes to build an app, even a
straightforward prototype, app inventors can quickly grasp and iterate without pay-
ing a significant cost in terms of a compile-load-run cycle that is typical with mobile
app development.

3.8 Conclusions

The MIT App Inventor project continues to push the boundaries of education within
the context of mobile app development. Its abstraction of hardware capabilities and
the reduction of complex logic into compact representations allows users to quickly
and iteratively develop projects that address real-world problems. We discussed
how App Inventor’s curriculum development incorporates elements of computa-
tional thinking and encourages computational action with real-world effects. We
also presented a number of projects that effectively accomplish this mission. We
continue to grow the platform to democratize access to newer technologies, prepar-
ing future generations for a world in which computational thinking is a central part
of problem-solving.

3.8.1 Future Vision

We already observe a rise in the growth of machine learning technologies. These
technologies offer new ways of engaging with the world and could dramatically
affect the future of technology and society. To support educating youth in this family
of technologies, we are actively developing artificial intelligence and machine learn-
ing components, as well as curricula teachers can use to instruct students in these
technologies.
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In the future, we expect that households will be increasingly computationally
literate. Already we are observing toddlers making use of devices such as phones
and tablets to learn and engage the world in different ways. These technologies will
become nearly universal in the near future, mandating increased pedagogy around
computational thinking as well as the creation of environments to aid young chil-
dren in using these tools to solve problems is critical. We must help them become
producers and change makers rather than simply consumers. Increasingly, we move
toward a world where functionality is abstracted, or provided as pieces that the com-
putationally literate can combine for novel solutions for any problem. App Inventor
will continue to push these boundaries by exploring bleeding edge technologies and
integrating them within a mobile context.

Lastly,we aremoving toward economies of knowledge. In these economies, access
to new innovations and ways of solving problems will differentiate individuals com-
peting globally (Powell & Snellman, 2004). Tools that provide increased abstraction
for solving problems will offer more advantages to individuals than traditional engi-
neering approaches.
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